Object Adaptive Imaging of Dynamic Scenery: Application to Cardiac MRI

Image Analysis and Understanding Data from Scientific Experiments Workshop

Los Alamos, December 2nd -6th

Nitin Aggarwal, Yoram Bresler Coordinated Sciences Labs and ECE department University of Illinois, Urbana-Champaign

Acknowledgements:

Work supported by NIH grant R21HL62336-02 and NSF grant BES02-01876 Travel to workshop supported by LANL

Outline

- 1. Dynamic imaging and Time-Sequential Sampling constraint
- 2. Time-Sequential Sampling (TSS) Theory
- 3. Application to cardiac MRI
 - Adaptive MR imaging
 - Time-warped models

Dynamic Imaging

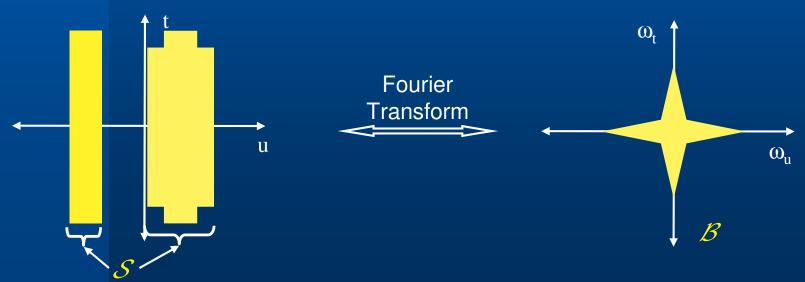
Problem:

Given a class $\mathcal{M} \subset \mathbb{R}^n$ of time-varying signals $g(\mathbf{u},t)$ with :

- 1. Spatial support : $S \triangleq \bigcup \sup\{g(\bullet,t)\}$
- 2. Spatio-temporal Spectral Support (essential):

$$\mathcal{B} \triangleq \operatorname{supp} \{ \int g(\mathbf{u}, t) e^{-j(\omega_{\mathbf{u}}\mathbf{u} + \omega_{t}t)} d\mathbf{u} dt \}$$

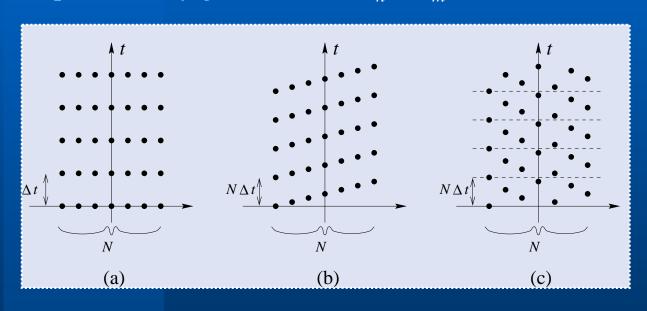
Find a sampling schedule $\Psi = \{u_l, t_l\}_l$ so that g(u, t) is recoverable from the corresponding samples.



Time-Sequential Sampling Constraint

Definition:

A sampling schedule $\Psi = \{u_l, t_l\}_l$ is time-sequential if only <u>one</u> point in u is acquired at any given time i.e. $t_n \neq t_m$ for $n \neq m$.



- a) Instantaneous sampling
- b) Progressive TSS
- c) Scrambled TSS

Applications:

Any imaging system with mechanical or electrical scanning like

- Radar or acoustic imaging
- Cardiac Magnetic resonance imaging (MRI)

TSS Schedule Design

Problems:

- Conditions on sampling rate ?
- Design of sampling pattern ?
- Reconstruction from acquired samples ?

Properties:

- Aliasing in TSS determined not only by density of points (sampling rate) in Ψ, but also by the <u>order</u> in which points are visited [Allebach,1987]
- Order in which sample points are visited need <u>not</u> be determined by their adjacency (in S)
- Optimization of Ψ is a very difficult combinatorial problem. Need to explore 256! possible orderings for 256 sample locations.

TSS Schedule Design

Solution:

- Unified TSS theory presented in Willis & Bresler, 1997
- Key idea:
 Consider TSS schedules that lie on a <u>lattice</u> (a periodic, regular set of points) in (*u*, *t*) space.

Result:

- Sampling pattern design through constrained geometric packing of \mathcal{B}, \mathcal{S} ...
- Reconstruction of g(u,t) through linear filtering
- Bounds on achievable TS sampling rates
- In practice, sampling rate reduced by large factor compared to conventional sampling schemes.

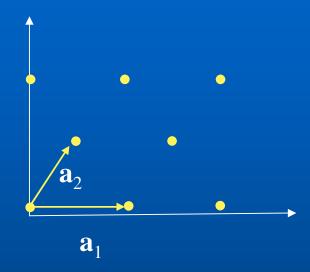
Time-Sequential Sampling Theory

Lattice Theory

Lattice : A lattice Λ_A is the set :

$$\Lambda_{\mathbf{A}} = \{ \sum_{i=1}^{n} m_i \mathbf{a}_i : m_i \in \mathbb{Z} \}$$

where \mathbf{a}_{i} (in \mathbb{R}^{n}) are linearly independent



Basis Matrix : A basis matrix of Λ_A is $A = [a_1, a_2, ...]$

Result: Every (rational) lattice has a basis matrix of the form $\mathbf{A} = \begin{bmatrix} B & s \\ 0 & T_R \end{bmatrix}$

Polar Lattice : The polar lattice of a lattice Λ_A is a lattice Λ_{A^*} with basis matrix $A^* = A^{-T}$

Multidimensional Sampling Theory

Result:

If a signal is sampled on lattice Λ_A then it's spectrum is replicated in the frequency domain on the polar lattice Λ_{A^*}

DTFT{
$$g(\mathbf{Am})$$
}(•) = $\frac{1}{|\det(\mathbf{A})|} \sum_{\mathbf{k} \in \mathbb{Z}^2} FT{g}(\bullet - \mathbf{A}^*\mathbf{k})$

Therefore the signal *g* can be recovered from it's samples iff the replicas do not overlap

The lattice Λ_{A^*} packs the spectral support \mathcal{B} of g

Notation : $\Lambda_A \in \mathcal{R}(\mathcal{B})$

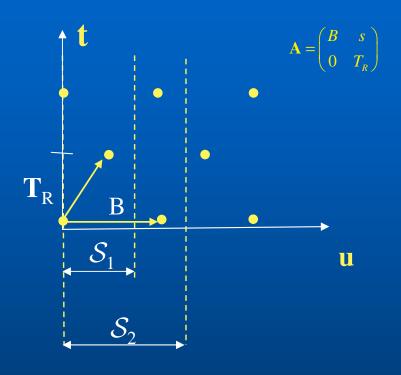
Time-Sequential Sampling on a Lattice

If sample points (u_n, t_n) are chosen to lie on a lattice Λ_A , in general, the timesequential constraint will not be met

However there may be *only one sample* point in S at any given sampling time instant i.e Λ_A is time-sequential w.r.t S

Notation : $\Lambda_A \in \mathcal{T}(S)$

Result : $\Lambda_A \in \mathcal{T}(S)$ if lattice spanned by B (i.e. Λ_B), packs S



$$\Lambda_{\mathsf{B}}$$
 + \mathcal{S}_1

Temporal uniformity constraint

Definition:

Temporally uniform lattice:

A lattice Λ_A is temporally uniform w.r.t support S, if the time instants at which samples are obtained are uniformly spaced

Notation : $\Lambda_A \in \mathcal{U}(S)$

Result:

If (Λ_B, S) tiles \mathbb{R} (\mathbb{R}^{n-1} in general) i.e. replicas of S cover \mathbb{R} without gaps or overlaps, then the lattice $\Lambda_A \in \mathcal{T}(S) \cap \mathcal{U}(S)$

Sampling Schedule Design

Find: A lattice sampling schedule $\Lambda_A = \{u_n, t_n\}_n$ such that:

- 1. Any signal in \mathcal{M} can be recovered from the samples
- 2. Schedule is time-sequential and temporally uniform w.r.t S (with time period T_R),
- 3. T_R is maximized

Solution:

$$\arg\max T_{R}$$

$$\mathbf{A} = \begin{pmatrix} B & s \\ 0 & T_{R} \end{pmatrix}; \Lambda_{\mathbf{A}} \in \mathcal{R}(\mathcal{B}) \cap \mathcal{T}(\mathcal{S}) \cap \mathcal{U}(\mathcal{S})$$

Solution computed by searching for lattices subject to the "dual" packing constraints:

- 1. Λ_{A^*} packs the spectral support \mathcal{B}
- 2. $(\Lambda_{\rm B}, \mathcal{S})$ tiles \mathbb{R}

Reconstruction and Results

Reconstruction method:

Filter the samples with filter with frequency response $H(\omega_u, \omega_t) = \chi_B(\omega_u, \omega_t)$

Performance bounds for TSS:

$$T_{R}(\Lambda, \mathcal{S}) \leq \frac{1}{d(\Lambda_{crit}(\mathcal{B})) \cdot volume(\mathcal{S})} \leq \frac{1}{volume(\mathcal{B}) \cdot volume(\mathcal{S})}$$

$$Speed \ Gain \ factor = G \triangleq \frac{T_{opt}}{T_{prog}} \leq \frac{volume(bounding \ box(\mathcal{B}))}{volume(\mathcal{B})}$$

Asymptotically and in practice:

- Bounds achievable
- No penalty for restriction to lattice patterns!
- No penalty for time-sequential constraint!

Adaptive Magnetic Resonance Imaging

Applications and challenges

Applications:

- Cardiac MRI:
 - a. Visualization of coronary arteries
 - b. Functional assessment of the ventricles
 - c. Myocardial flow, perfusion and viability
 - d. Vascular disease and tissue characterization
 - e. Myocardial dynamics
- 2. Functional MRI
- 3. Interventional MRI

Challenges:

- MR coronary angiography : Current resolution limited to 1mm
- Cardiac imaging without breatholding
- Plaque characterization in coronary angiography: requires spectral imaging, in addition to high spatio-temporal resolution

Cardiac Image models

Characteristics:

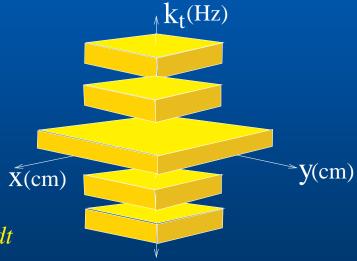
- The (highly) dynamic portion of the object (i.e heart) is spatially localized within the field-of-view.
- The cardiac motion is quasi-periodic

Model:

Object to be imaged: I(x, y, t)

Spatio-temporal spectrum: $I(x, y, k_t) = \int I(x, y, t)e^{-ik_t t} dt$

Spatio-Temporal Spectral support : $supp\{I(x, y, k_t)\}\$

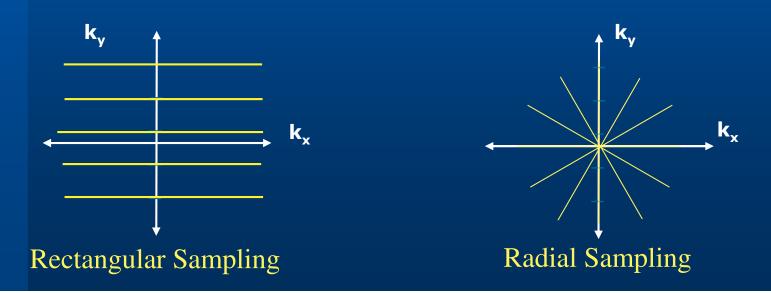


MR Imaging

Imaging Equation:

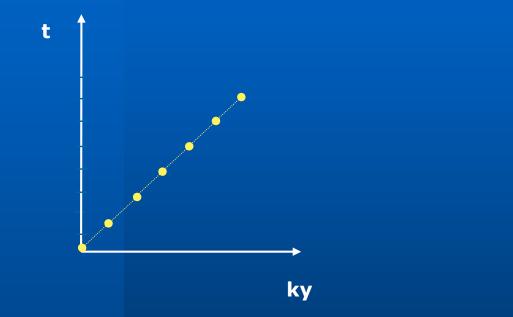
$$s(k(t)) = \int_{FOV} I(r,t)e^{-ik(t)\cdot r} dr \qquad t \ll T_2$$

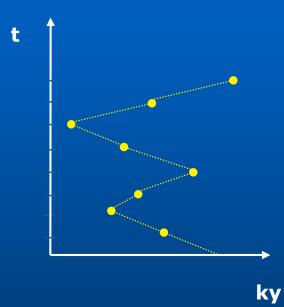
- Signal is (spatial) Fourier transform of object I(r,t) evaluated at a certain frequency determined by trajectory of k(t)
- Trajectory of k(t) determined by applied magnetic gradient field
- Length of trajectory cannot be too large



The k-t space perspective

The (k_y, t) trajectory ...

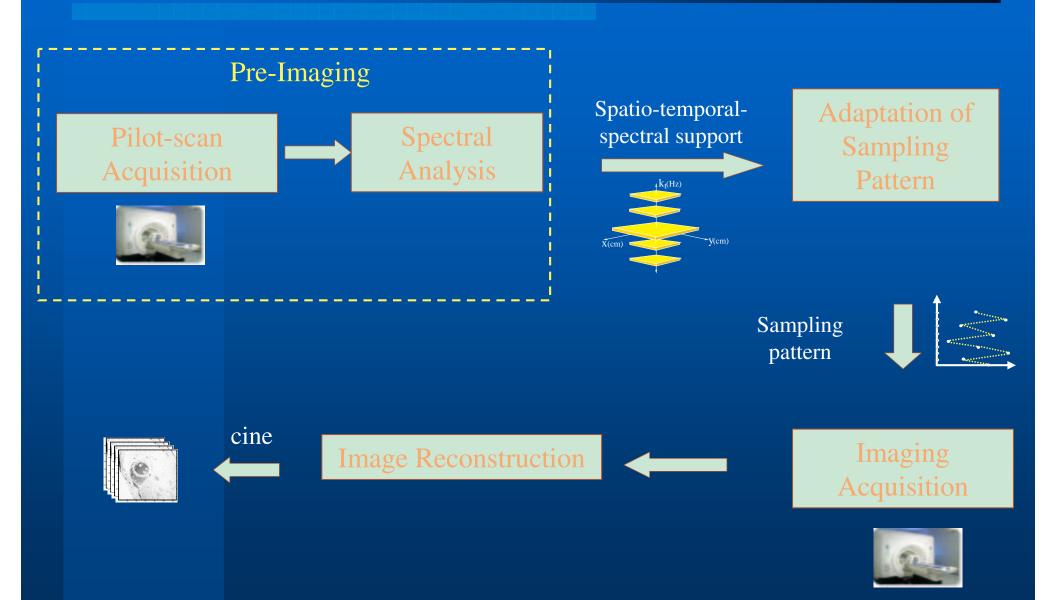




Time-Sequential Sampling Constraint:

Data at *only one* k_y can be acquired at a given time instant

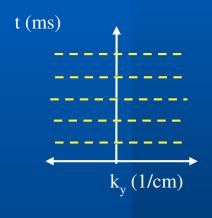
Adaptive Imaging Scheme



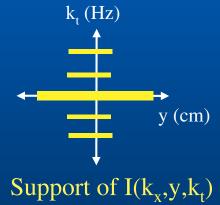
A. Pre-imaging Acquisition

Aim: To estimate the support of $I(k_x, y, k_t)$

Method: For each k_x ...



Spectral Analysis



$$I(k_x,k_y,t)$$

 k_x – phase-encode

$$\mathcal{B} = \bigcup_{k_x} supp\{I(k_x, y, k_t)\}$$

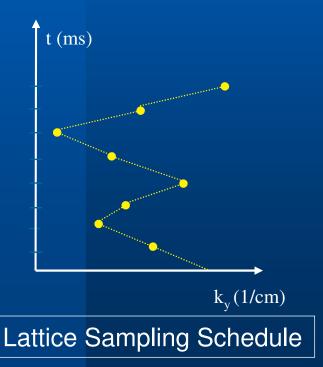
B. Adaptation of Imaging

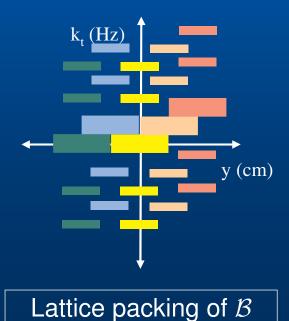
Given:

- Spatio-temporal spectral support $\mathcal{B} \subset \mathbb{R}^2$ (from pre-imaging)
- 'Spatial' support set $S=[-k_{y,max}, k_{y,max}]$ determined by desired spatial resolution $(k_{y,max})$

Find:

Minimum rate, temporally uniform, TS sampling schedule $\Lambda_A = \{k_v(n), nT_R\}$





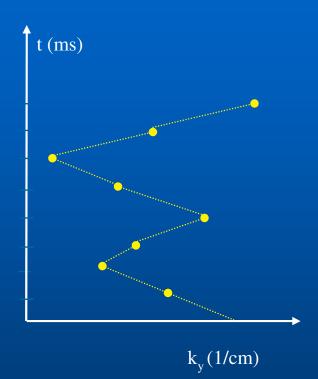
C. Imaging Acquisition

Acquire data according to the sampling schedule $\{k_v(n), nT_R\}$

D. Reconstruction

Filter acquired samples with filter with impulse response

$$H(y,k_t) = \chi_{\mathcal{B}}(y,k_t)$$



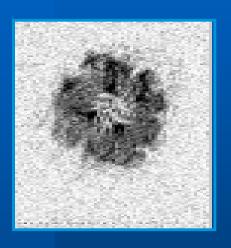
 k_x – readout

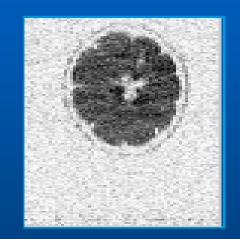
k_y – phase-encode

Results (Experimental Parameters)

- Equipment: VARIAN/SISCO 4.7T imaging spectrometer.
- MRI Parameters: FLASH pulse sequence with flip angle 9°, TR=10ms (optimally chosen for Time-sequential sampling), total acquisition time 20s.
- Object: lemon moved periodically by a motor.
- Motion: Periodic with period approximately 1.5 Sec and involves :
 - Translation in readout direction
 - Translation in PE direction
 - In plane rotation
 - Out of plane rotation and translation

Simulation Result





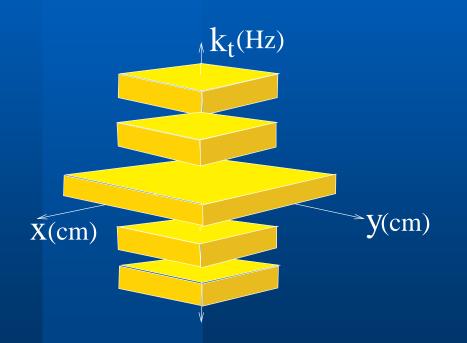
Progressive sampling (96 frames, 25 fps)

TS Lattice Sampling (96 frames, 25 fps)

Time-warping: Modeling Cardiac Aperiodicity

Role of Spectral model

Spatio-Temporal spectral model:



- Regions with significant temporal variation spatially localized
- Cardiac motion is quasi-periodic
- **E** Spectral bands
- Spectral bands broadened due to aperiodicity of dynamics
- Ł Higher sampling rate required

Role of Time-Warp

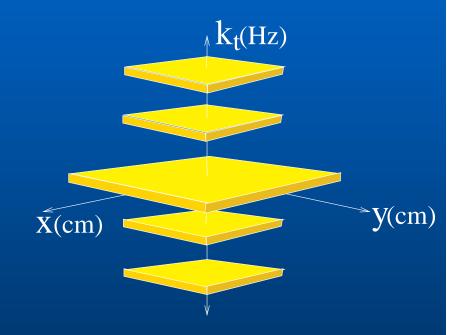
Time-Warp Model:

$$I(x,y,t) = G(x,y,\Phi(t))$$

I(x,y,t): Time-varying cardiac image

G(x,y,t): Idealized time-varying cardiac image

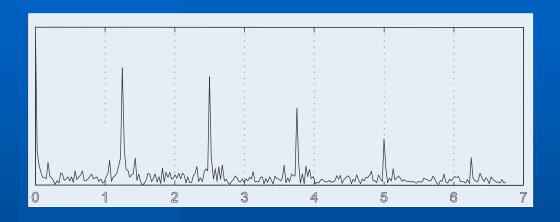
 $\Phi(t)$: Time-warp



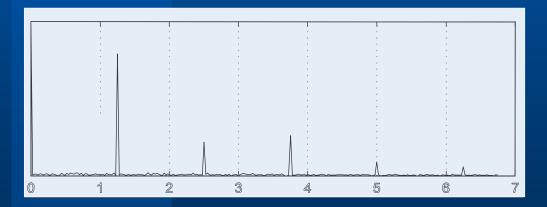
Explicitly accounting for time-warp narrows spectral support

Ł Lowers sampling rate required

Role of Time-Warp



Temporal Spectrum (before dewarping)



Temporal Spectrum (after dewarping)

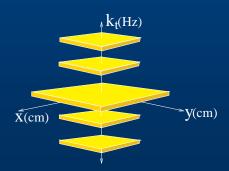
Models:

$$I(x,y,t) = G(x,y,\Phi(t))$$

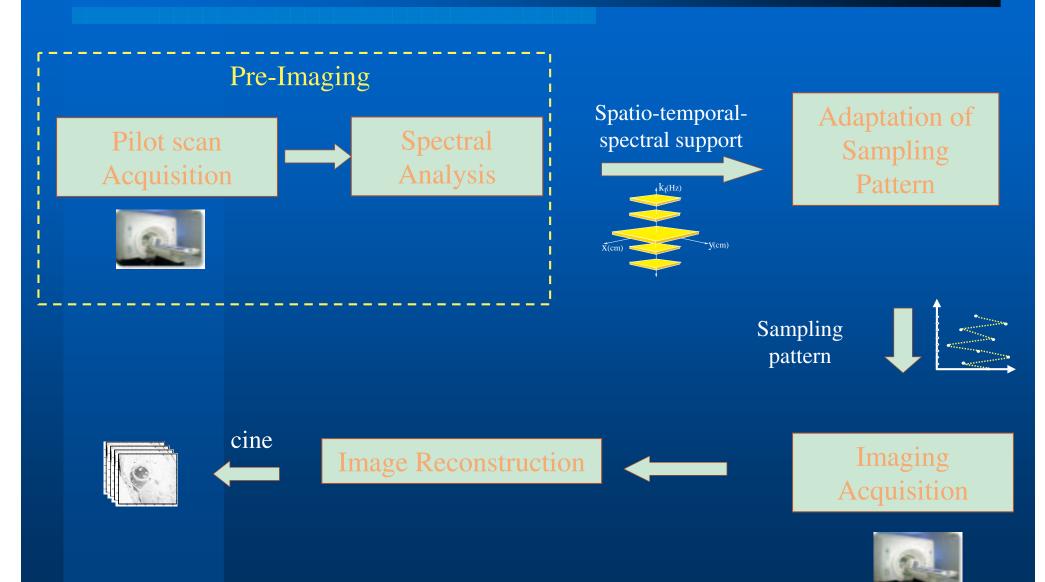
- Time warp $\Phi(t)$: Assumed to be monotonic, slowly varying
- Idealized cardiac cine G(x,y,t):
 - a. Time-Warped Harmonic Model:

$$G(x,y,t) = \sum_{m=-M}^{M} \alpha_m(x,y) \cdot e^{j2\pi m f_0 t}$$

- $\alpha_{\rm m}$ outside modeled spectral support = 0
- b. Time-warped banded spectral model:
- \subseteq G(x,y,t) has a narrow banded spectral support



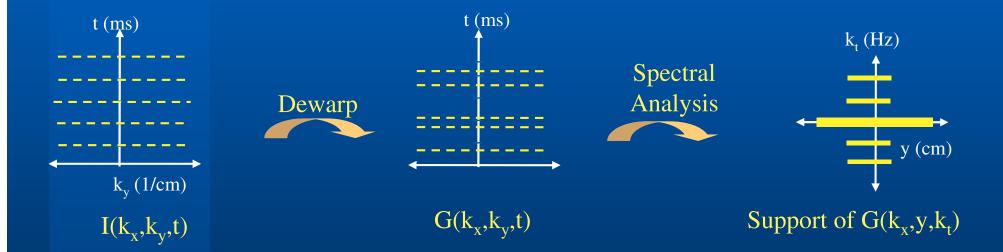
Imaging Scheme



A. Pre-imaging Acquisition

Aim: To estimate the support of $G(k_x,y,k_t)$

Method: For each k_x ...

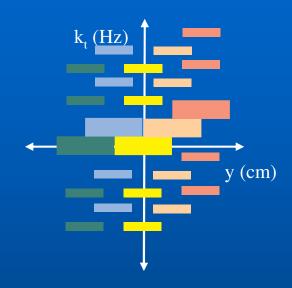


 k_x – phase-encode

k_v - readout

B. Adaptation of Imaging

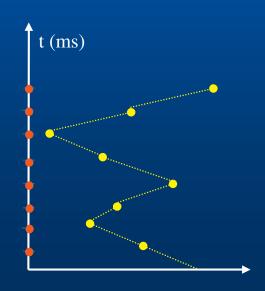
Sampling lattice adapted to spatio-tempral spectral support of $G(k_x,y,k_t)$



C. Imaging acquisition

Use 2-echo MR acquisition:

- First echo: k-space lines for cine reconstruction
- Second echo: navigator data for timewarp estimation



D. Cine Reconstruction

a. Time-Warped Harmonic Model:

$$I(x, k_y, t) = \sum_{m=-M}^{M} \alpha_m(x, k_y) \cdot e^{j2\pi m f_0 \Phi(t)}$$

- Ø Use navigator data to estimate:
 - 1. Time-warp $\Phi(t)$ (dynamic programming)
 - 2. Fundamental frequency f_0 (nonlinear least-squares with nonuniform samples)
- \emptyset Use Imaging data to estimate $\alpha_{\rm m}$ (linear least-squares)

D. Cine Reconstruction ...

b. Time-Warped Banded Spectral Model:

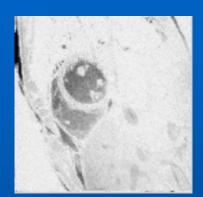
- \emptyset Use navigator data to estimate time-warp $\Phi(t)$
- Ø Dewarp sampling instants nT_R to $t_n = \Phi^{-1}(nT_R)$
- \emptyset G(k_x,k_y,t) is available at non-uniform (warped) time-instants t_n
- \emptyset Γ = Set of possible reconstructions ...
 - Consistent with acquired data
 - Consistent with modeled spectral support
 - Energy bounded by some constant E
- \emptyset G*(x,y,t) chosen such that :

$$G^{*}(x, y, t) = \underset{G(x, y, t) \in \Gamma}{\arg \min} \sup_{H(x, y, t) \in \Gamma} ||G(x, y, t) - H(x, y, t)||$$

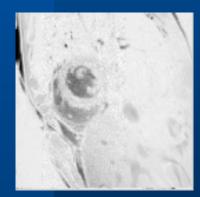
Simulation Setup

- Cardiac MRI cine used as a heart phantom
- Phantom driven aperiodically using real ECG data
- Phantom used to simulate Pre-Imaging and Imaging data
- Original cine data:
 - Ø 80 frames; 128x128 pixels
 - Ø Segmented true FISP; 8 receiver channels; 3 echos/segment
 - \emptyset T_R = 2.6 ms; T_{acq} = 16 s
- Acquisition using proposed scheme :
 - \emptyset Optimal $T_R = 8.9 \text{ ms}$
 - Ł 20-fold slower sampling

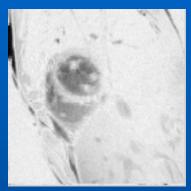
Simulation Result



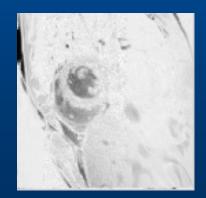
Original cine



Time-warped Harmonic Reconstruction



Conventional reconstruction



Time-warped banded spectral reconstruction

Discussion

- Improved adaptive data <u>sampling</u> and <u>reconstruction</u> methods for imaging time-varying objects under TS constraint
- The whole process of spectral analysis, adaptation of acquisition, reconstruction can be <u>automated</u> in many applications
- Application to cardiac MRI allows for 20-fold slower sampling than conventional methods
- Explicit modeling of cardiac <u>aperiodicity</u> reduces data redundancy and allows for even slower acquisition

